A Markov chain method for weighting climate model ensembles
نویسندگان
چکیده
Abstract. Climate change is typically modeled using sophisticated mathematical models (climate models) of physical processes that range in temporal and spatial scales. Multi-model ensemble means climate show better correlation with the observations than any separately. Currently, an open research question how can be combined to create mean optimal way. We present a novel stochastic approach based on Markov chains estimate model weights order obtain means. The method was compared existing alternatives by measuring its performance training validation data, as well model-as-truth experiments. chain showed improved over those methods when measured root squared error comparable results this comparative analysis should serve motivate further studies applications other nonlinear address issues finding weight for constructing
منابع مشابه
analysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولDynamic Weighting In Markov Chain Monte Carlo
This article provides a rst theoretical analysis on a new Monte Carlo approach, the dynamic weighting, proposed recently by Wong and Liang. In dynamic weighting, one augments the original state space of interest by a weighting factor, which allows the resulting Markov chain to move more freely and to escape from local modes. It uses a new invari-ance principle to guide the construction of trans...
متن کاملCombining Ensembles of Regional Climate Model Output via a Multivariate Markov Random Field Model
Climate models have become an important tool in the study of climate and climate change, and ensemble experiments consisting of multiple climate model runs are used in studying and quantifying the uncertainty in climate model output. However, there are often only a limited number of model runs available for a particular experiment, and the statistical challenge is to characterize the distributi...
متن کاملAn Adaptive Markov Chain Monte Carlo Method for GARCH Model
We propose a method to construct a proposal density for the Metropolis-Hastings algorithm in Markov Chain Monte Carlo (MCMC) simulations of the GARCH model. The proposal density is constructed adaptively by using the data sampled by the MCMC method itself. It turns out that autocorrelations between the data generated with our adaptive proposal density are greatly reduced. Thus it is concluded t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geoscientific Model Development
سال: 2021
ISSN: ['1991-9603', '1991-959X']
DOI: https://doi.org/10.5194/gmd-14-3539-2021